
Fiche TD avec le logiciel : kkpnas
—————

Analyse critique d’un article sur le masting selon
lequel la synchronie serait plus forte dans la

disette que dans l’abondance
Pr Jean R. Lobry

—————

Le logiciel est très puissant pour faire des simulations aidant à
l’interprétation des résultats mis en avant dans une publication. On
l’illustre ici avec un article prétendant que la synchronie entre des
séries temporelles de masting serait plus intense entre les années de
disette qu’entre les années d’abondance. Le choix d’un critère de
classification conduisant à des effectifs très déséquilibrés entre les
deux classes induit un impact des points de nuisance très contrasté.
Les points de nuisance sont les années où la classification n’est pas
cohérente entre les deux séries. Quelques exercices pour poursuivre
l’analyse sont proposés.
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1 Introduction

On s’intéresse ici à l’article [11] intitulé « Geography of masting creates greater
synchrony in seed scarcity than in seed abundance. » Les données analysées

sont des séries temporelles, x, de suivi pendant n = 36 années de la production
de fruits par des arbres1. Les éléments de x sont à valeur dans R+, autrement
dit nous avons des séries non négatives :

∀i ∈ {1, . . . , n} : xi ≥ 0 (1)

Une première caractéristique importante des séries de masting est leur forte
variabilité : pour reprendre l’échelle verbale de Kvålseth [3] les trois

quart des séries de la base de données MASTREE+ [1] sont dans la gamme
haute et très haute de variabilité [6]. Les distributions des valeurs des séries de
masting sont donc très fortement asymétriques à droite, ce qui n’est pas sans
conséquence sur le choix fait par les auteurs [11] pour distinguer les années de
disette et d’abondance. Soit Mi la variable aléatoire de Bernoulli indicatrice
de l’évènement : « la ième observation xi correspond à une année de masting ».
La règle de décision utilisée est :

M : x → {0, 1}n

xi 7→ Mi = M(xi) =
{

1 si xi > max x
2

0 sinon
(2)

Autrement dit, on déclare années d’abondance toutes celles dont la produc-
tion de fruits est strictement supérieure à la valeur maximale observée dans

la série divisée par deux. C’est un choix qui est discutable, il y aurait bien des
alternatives [4, 5], mais tel n’est pas l’objet ici puisque nous voulons reproduire
la méthodologie utilisée [11]. La conséquence immédiate de ce choix est qu’il va
y avoir un fort déséquilibre dans la partition définie par l’équation 2 : beaucoup
d’années de disette et peu d’abondance, et ce déséquilibre ira croissant avec le
niveau de variabilité de la série.

Une seconde caractéristique importante des séries de masting est leur syn-
chronie. Soient deux séries x1 et x2 issues de deux populations distantes,

parfois de plusieurs centaines de kilomètres comme dans [11], on observe souvent
qu’elles sont relativement synchrones avec des années d’abondance et de disette
souvent identiques entre les deux. Pour quantifier le degré de synchronie entre
deux séries on utilise des statistiques de corrélation comme le r de Pearson [7],
le ρ de Spearman [9] ou le τ de Kendall [2]. Nous utiliserons comme dans [11]
le ρ de Spearman qui n’est rien d’autre que le r de Pearson calculé sur les
rangs des séries x1 et x2.

L’approche utilisée dans [11] est de partitionner les données selon l’équa-
tion 2 et de calculer un coefficient de corrélation dit « partiel » pour les

années d’abondance et de disette. Attention, cette dénomination peut porter à
confusion parce que l’on parle également de corrélation partielle pour la corré-
lation entre deux variables conditionnellement à une autre, on prendra soin de
bien toujours mettre des guillemets. Mais il y a un petit problème : que fait-on

1Sapin argenté silver fir, hêtre European beech, mélèze European larch, épicéa Norway
spruce, pin sylvestre Scots pine, chêne sessile sessile oak et chêne pédonculé pedunculate oak.
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par exemple si Mi = 1 pour x1 et Mi = 0 pour x2 ? Voici ce qui est dit [11, p.
7] :

In cases when the annual value of seed production for the two sites
falls into opposite tails, that value was included when calculating
the partial Spearman correlation in both tails [10].

Et en retourant à la source [10, p. 5] :

In cases when the annual value of seed production for the two sites
falls into opposite tails, that value was included when calculating
partial Spearman correlation in both tails. Thus, if one site expe-
rienced a mast peak and the other a year of seed scarcity in the
same year, synchrony was reduced in both tails.

Le diable est dans les détails et c’est ici que le bât blesse. Autant l’équa-
tion 2 définit bien une partition du jeu de données, autant on ne peut pas

considérer que les corrélations « partielle » d’abondance et de pénurie sont une
décomposition de la corrélation globale puisqu’elles peuvent être calculées avec
des points en commun. Nous appellerons ces points en commun des points de
nuisance. Pour un couple de deux séries (x1, x2) on définit la variable aléatoire
de Bernoulli indicatrice de l’évènement : « la ième année du couple (x1i , x2i)
correspond à un point de nuisance » par :

N : (x1, x2) → {0, 1}n

(x1i
, x2i

) 7→ Ni = N(x1i
, x2i

) =
{

1 si M(x1i) ̸= M(x2i)
0 sinon

(3)

Notons que ces points de nuisance seront par construction communs aux
sous-ensembles utilisés pour calculer la synchronie des années d’abondance

et de disette. Il est un peu abusif de dire que l’on a décomposé la synchronie
entre les années de pénurie et d’abondance en s’appuyant sur des statistiques
calculées sur des données pouvant se chevaucher. Mais à quel point cela pose-t-il
problème en pratique ? C’est ici que est un outil puissant.

2 Simulations
2.1 Trois cas dégénérés

Le code utilisé ici est donné en annexe (section 4 page 10). On commence
par le cas dégénéré de deux séries parfaitement synchrones pour expliquer

les sorties graphiques.

set.seed(1) ; plotsynchr(r = 1)
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Sur le graphique du haut nous avons la représentation de nos deux séries x1
et x2 qui dans ce cas particulier sont parfaitement superposées. Les années

d’abondance sont en rouge et celles de disette en bleu. La valeur du coefficient
de corrélation de Spearman est donnée en titre du graphique ainsi que les
coefficients de variation de Pearson [8], PCV, et celui de Kvålseth [3], KCV.
Par défaut on fait une série de 36 ans comme dans [11] mais on peut modifier
ça avec le paramètre ny.

Dans les graphiques du bas on a séparé les années de disette à gauche
des années d’abondance à droite. Les titres donnent les ρ « partiels » de

Spearman. Les points de nuisance (équation 3) sont en jaune lavasse, il n’y en
a pas ici puisque les séries sont identiques. Ce sont les rangs des valeurs qui sont
représentées pour avoir le pendant graphique du ρ de Spearman. Pour mieux
comprendre la coloration des points prenons le cas dégénéré de deux séries en
parfaite opposition de phase.

set.seed(1) ; plotsynchr(r = -1)
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Cette fois nous avons des points de nuisance en jaune lavasse. La synchronie
« partielle » pour les années d’abondance n’est calculée qu’avec des points

de nuisance, on voit la limite du sens que l’on peut donner à cette statistique.
Voyons maintenant le cas dégénéré de deux séries complètement dé-corrélées.

set.seed(1) ; plotsynchr(r = 0)
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C’est là que ça devient intéressant sur le graphique en bas à droite. Comme
les années d’abondance sont des évènements rares il est peu probable d’ob-

server simultanément une année d’abondance dans les deux séries, on se retrouve
avec beaucoup de points de nuisance qui ont une valeur élevée dans une série et
une valeur basse dans l’autre. On induit ainsi une corrélation négative dans la
statistique des années d’abondance. On le fait également dans la statistique des
années de disette, mais l’effet est moins prononcé car noyé dans plus de valeurs.
Maintenant que nous avons compris l’origine du gag, nous pouvons procéder par
simulation pour étudier son impact.

2.2 Étude par simulation

On part de la figure [11, fig. 1] pour le hêtre (beech), on voit un ρ de Spearman
qui décroît à peu près linéairement de 0.7 à 0.3 entre une distance 0 à 400

km entre les sites On résume donc ça par le modèle suivant :

taupred <- function(distance) -0.001*distance + 0.7
xx <- seq(0, 400, le = 256)
plot(xx, taupred(xx), type = "l", lwd = 2, xlab = "Distance [km]", las = 1,

main = "Synchronie globale pour le hêtre", ylab = "Spearman correlation",
ylim = c(-0.2, 0.8), col = "darkblue")

abline(h = 0, lty = 2)
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On commence par initialiser avec des valeurs manquantes les tables GlobalSyn,
LowTailSyn et UppTailSyn pour stocker les résultats de nos simulations

pour les années de disette et d’abondance, respectivement. La variable ndist
contrôle le nombre de distances entre 0 et 400 km que l’on veut échantillonner
et la variable nsites le nombre de sites souhaité à chaque point kilométrique.
Dans les tables de résultat les sites sont en ligne et les points kilométriques en
colonnes.
nsites <- 256 ; ndist <- 11 ; seqd <- as.integer(seq(0, 400, le = ndist))
LowTailSyn <- as.data.frame(matrix(NA, nrow = nsites, ncol = ndist))
colnames(LowTailSyn) <- paste0("D", seqd)
GlobalSyn <- UppTailSyn <- LowTailSyn

On définit la fonction getSyn() pour tirer au hasard un couple de séries tem-
porelles (x1, x2) et calculer les corrélations « partielles » pour les années

d’abondance (Hrsp) et les années de disette (Lrsp) ainsi que la synchronie glo-
bale (Grsp). Elle fait appel à la fonction rsynch() expliquée en annexe (section 4
page 10) pour avoir un couple de séries avec un niveau de synchronie donné.
L’argument nuisance contrôle si on souhaite incorporer les points de nuisance
ou non. Comme tout est vecteur dans le code est compact et élégant.

getSyn <- function(nuisance = TRUE, method = "spearman", ...){
z <- rsynch(...) ; x1 <- z[ , 1] ; x2 <- z[ , 2]
Hx1 <- x1 > max(x1)/2.0 ; Lx1 <- !Hx1
Hx2 <- x2 > max(x2)/2.0 ; Lx2 <- !Hx2
if(nuisance){

Hx12 <- Hx1 | Hx2
Lx12 <- Lx1 | Lx2

} else {
Hx12 <- Hx1 & Hx2
Lx12 <- Lx1 & Lx2

}
Grsp <- cor(x1, x2, method = method)
Hrsp <- cor(x1[Hx12], x2[Hx12], method = method)
Lrsp <- cor(x1[Lx12], x2[Lx12], method = method)
return(c(Grsp = Grsp, Hrsp = Hrsp, Lrsp = Lrsp))

}

Il suffit maintenant de faire rouler notre fonction avec replicate() pour
peupler les colonnes des tables de résultat UppTailSyn, LowTailSyn et GlobalSyn.
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r <- taupred(seqd)
for(j in seq_len(ndist)){

manip <- as.data.frame(t(replicate(nsites, getSyn(r = r[j]))))
GlobalSyn[ , j] <- manip$Grsp
UppTailSyn[ , j] <- manip$Hrsp
LowTailSyn[ , j] <- manip$Lrsp

}

Il ne reste plus qu’à représenter la distribution des valeurs pour chaque point
kilométrique. On superposera en bleu la synchronie globale.

plotUppLow <- function(ylim = c(-1, 1), ...){
par(mfrow = c(1, 2))
mybxplt <- function(x, ...){

boxplot(x, ylim = ylim, las = 2, names = substr(colnames(x), 2, 4),
xlab = "Distance [km]", ylab = "Spearman correlation", ...)
abline(h = 0, lty = 2)
points(1:ndist, apply(GlobalSyn, 2, median, na.rm = TRUE), col = "blue2", type = "l", lwd = 2)

}
mybxplt(LowTailSyn, main = "Lower tail synchrony")
mybxplt(UppTailSyn, main = "Upper tail synchrony")

}
plotUppLow()
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Le moins que l’on puisse dire c’est qu’il n’y a pas le même impact des points de
nuisance sur les années de disette et d’abondance. À gauche, pour les années

de disette, la médiane est assez proche de la valeur globale, on note quelques
outliers du coté des valeurs faibles, sans doute quand le nombre de points de
nuisance est élevé, tirant la corrélation vers le bas. À droite, pour les années
d’abondance, l’impact est dramatique puisque la médiane est toujours néga-
tive. Les points de nuisance plombent complètement la corrélation. Regardons
maintenant ce qui se passe si on n’incorpore pas les points de nuisance.

GlobalSyn[ , ] <- UppTailSyn[ , ] <- LowTailSyn[ , ] <- NA
for(j in seq_len(ndist)){

manip <- as.data.frame(t(replicate(nsites, getSyn(r = r[j], nuisance = FALSE))))
GlobalSyn[ , j] <- manip$Grsp
UppTailSyn[ , j] <- manip$Hrsp
LowTailSyn[ , j] <- manip$Lrsp

}
plotUppLow()
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À gauche pour les années de disette, cela ne change pas grand chose, on a
une distribution plus symétrique avec des outliers des deux cotés de la

distribution. À droite, pour les années d’abondance, on a quelque chose d’assez
moche qui s’explique par le faible nombre de points qui satisfont le critère (eq.
2) simultanément dans les deux séries. On peut s’en convaincre en comptant
le nombre de valeurs manquantes (on ne peut pas calculer le coefficient de
corrélation quand il y a zéro ou un point) dans la table :

apply(UppTailSyn, 2, \(x) sum(is.na(x)))
D0 D40 D80 D120 D160 D200 D240 D280 D320 D360 D400

158 161 167 196 187 193 198 210 218 223 217

Il y a de 60 % à 90 % de valeurs manquantes selon le niveau de synchronie.
On va aussi se retrouver avec beaucoup de cas avec seulement deux points,

soit ρ = ±1, ce qui explique l’étendue des boites de -1 à +1 sur le graphique. Il
n’y a en fait pas beaucoup de valeurs distinctes possible pour ρ avec si peu de
points :

apply(UppTailSyn, 2, \(x) length(unique(zapsmall(x))))
D0 D40 D80 D120 D160 D200 D240 D280 D320 D360 D400
12 12 11 8 9 11 7 10 7 5 4

Au vu de ces résultats on pourrait être tenté d’interpréter l’introduction des
points de nuisance comme une volonté de pouvoir calculer un coefficient

de corrélation « partiel » quoi qu’il en coûte, comme disait « l’autre ». Les pes-
simistes y verront une illustration du triste publish or perish, les optimistes une
invitation à la très chère disputatio de l’Université.

3 Exercices
3.1

Pensez-vous que les résultats des simulations seront changés si on utilise le
coefficient de Pearson au lieu de celui de Spearman ? Faites ensuite la

simulation.
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3.2

Pour augmenter le nombre de points disponibles (hors points de nuisance)
pour calculer le coefficient de corrélation « partiel » des années d’abon-

dance on pourrait être tenté d’augmenter la longueur des séries en jouant sur le
paramètre ny. Essayez. Ça ne marche pas. Pourquoi ?

3.3

En jouant sur le niveau de variabilité des séries avec le paramètre varxy es-
sayez de vous rapprocher le plus possible de la figure [11, fig. 1]. Faites alors

quelques simulations avec la fonction plotsynchr(). Ces séries vous semblent-
elles bien représenter le phénomène de masting ?

3.4

La fonction utilisée ici pour simuler des séries de masting n’est pas complè-
tement satisfaisante dans le sens où elle ne comporte pas suffisamment de

valeurs nulles. Transformez-la pour que toutes les valeurs en dessous d’un seuil
donné soient forcées à zéro. Refaire alors les analyses avec cette nouvelle version.

4 Annexes
4.1 rsynchr()

La fonction rsynchr() qui permet de tirer deux séries x et y avec un niveau
de synchronie donné dérive directement de la fonction mvrnorm() du paquet

MASS [12] qui permet de tirer un échantillon pseudo-aléatoire de n points dans
une distribution normale bivariée.
rsynch <- function(ny = 36, mu = c(0, 0), varxy = 1, r = 0.7, empirical = TRUE, ...){

require(MASS)
Sigma <- matrix(c(varxy, r*varxy, r*varxy, varxy), nrow = 2, ncol = 2)
return(exp(mvrnorm(ny, mu, Sigma, empirical = empirical)))

}

Le paramètre Sigma de la fonction mvrnorm() est la matrice de variance-
covariance ς :

ς =
(

σ2
x σxy

σxy σ2
y

)
(4)

Pour se simplifier la vie on va supposer, ce qui n’est pas déraisonnable pour
des études de masting intra-spécifiques, qu’il y a homoscédasticité (c’est à

dire σ2
x = σ2

y = σ2) et que la matrice ς se simplifie en :

ς =
(

σ2 σxy

σxy σ2

)
(5)

Le coefficient de corrélation linéaire rxy de Pearson [7] s’écrit alors comme :
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rxy = σxy

σxσy
= σxy

σ2 (6)

Il suffit donc d’utiliser une matrics de la forme :

ς =
(

σ2 rxyσ2

rxyσ2 σ2

)
(7)

Voici un exemple d’utilisation pour illustrer la signification du coefficient de
corrélation linéaire. On utilise ici l’option empirical = TRUE pour que la

valeur du coefficient de variation soit exactement celle demandée.
set.seed(1) ; par(mfrow = c(3, 3), mar = c(1.5, 1, 2, 1))
for(r in seq(-0.95, +0.95, le = 9))

plot(mvrnorm(256, c(0,0), matrix(c(1, r, r, 1), 2, 2), empirical = TRUE),
main = bquote(r^2 == .(r)), pch = 19)
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Pour avoir une distribution de type masting j’ai simplement pris l’exponen-
tielle des valeurs. Cela permet de générer des séries non-négatives asymé-

triques à droite, et ce d’autant plus que la valeur du paramètre varxy est élevée.
Avec les valeurs par défaut on obtient des séries comme celles présentées dans
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la section 2.1 page 3. La valeur du ρ de Spearman [9] est inchangée par cette
transformation monotone mais pas celle du r de Pearson [7].

set.seed(1) ; par(mfrow = c(3, 3), mar = c(1.5, 1, 2, 1))
for(r in seq(-0.95, +0.95, le = 9))

plot(rsynch(ny = 256, r = r),
main = bquote(r^2 == .(r)), pch = 19)
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4.2 plotsynchr()

Le code ci-après est repris de [6, supp. mat.] pour calculer le coefficient de
variation de Pearson [8], PCV, et celui de Kvålseth [3], KCV. L’URL

donnée dans l’article2 est obsolète mais devrait rediriger vers la nouvelle3 auto-
matiquement.

sdn <- function(x, i, ...){
n <- sum(!is.na(x)) # number of non missing values
return(sqrt((n - 1)/n)*sd(x[i], ...))

}
PCV <- function(x, i, ...){

barx <- mean(x[i], ...)
if(isTRUE(all.equal(barx, 0))) return(0)

2https://pbil.univ-lyon1.fr/R/donnees/CVisDead.zip
3https://esb.univ-lyon1.fr/donnees/CVisDead.zip
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return(sdn(x[i], ...)/barx)
}
KCV <- function(x, i, ...){

PCV2 <- PCV(x, i, ...)^2
return(sqrt(PCV2/(1 + PCV2)))

}

Le code ci-après est utilisé pour produire les graphiques de la section 2.1
page 3, se reporter à cette dernière pour leur explication.

plotsynchr <- function(ny = 36, ...){
layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))
z <- rsynch(ny = ny, ...) ; x1 <- z[ , 1] ; x2 <- z[ , 2]
rsp <- signif(cor(x1, x2, method = "spearman"), 3)
PCV1 <- signif(PCV(x1, na.rm = TRUE), 3)
PCV2 <- signif(PCV(x2, na.rm = TRUE), 3)
KCV1 <- signif(KCV(x1, na.rm = TRUE), 3)
KCV2 <- signif(KCV(x2, na.rm = TRUE), 3)
main <- bquote(r[sp] == .(rsp)~~

phantom(0)^P*CV[1] == .(PCV1)~~
phantom(0)^K*CV[1] == .(KCV1)~~
phantom(0)^P*CV[2] == .(PCV2)~~
phantom(0)^K*CV[2] == .(KCV2))

Hx1 <- x1 > max(x1)/2 ; Lx1 <- !Hx1
Hx2 <- x2 > max(x2)/2 ; Lx2 <- !Hx2
bg1 <- ifelse(Hx1, "red3", "blue3")

# Time series
par(mar = c(4, 4, 2, 2) + 0.1)
plot(1:ny, x1, type = "b", pch = 21, ylim = range(z), main = "", bg = bg1,

xlab = "Time", ylab = "Masting intensity", las = 1)
title(main = main, line = 1)
bg2 <- ifelse(Hx2, "red2", "blue2")
points(1:ny, z[,2], type = "b", pch = 23, bg = bg2)
legend("toplef", inset = 0.01,

legend = c(bquote(x[1]), bquote(x[2])), pch = c(21, 23), bg = grey(0.97))
Hx12 <- Hx1 | Hx2
Hrsp <- signif(cor(x1[Hx12], x2[Hx12], method = "spearman"), 3)
Lx12 <- Lx1 | Lx2
Lrsp <- signif(cor(x1[Lx12], x2[Lx12], method = "spearman"), 3)
par(mar = c(3, 4, 1.5, 2) + 0.1)

# scarcity correlation plot
col <- ifelse(Lx1[Lx12] & Lx2[Lx12], "blue3", "yellow3")
rx1 <- rank(x1[Lx12]) ; rx2 <- rank(x2[Lx12])
plot(rx1, rx2, pch = 19, col = col)
abline(lm(rx2~rx1), col = "blue3")
title(main = bquote(r[spp] == .(Lrsp)), line = 1, col.main = "blue3")
legend("topleft", inset = 0.01, legend = c("OK", "Nuis."),

col = c("blue3", "yellow3"), pch = 19, bg = grey(0.97))

# abundance correlation plot
col <- ifelse(Hx1[Hx12] & Hx2[Hx12], "red3", "yellow3")
rx1 <- rank(x1[Hx12]) ; rx2 <- rank(x2[Hx12])
plot(rx1, rx2, pch = 19, col = col)
title(main = bquote(r[spp] == .(Hrsp)), line = 1, col.main = "red3")
abline(lm(rx2~rx1), col = "red3")
legend("topleft", inset = 0.01, legend = c("OK", "Nuis."),

col = c("red3", "yellow3"), pch = 19, bg = grey(0.97))

}
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