Fiche TD avec le logiciel “R : kkpnas

Analyse critique d'un article sur le masting selon
lequel la synchronie serait plus forte dans la
disette que dans I'abondance

Pr Jean R. LOBRY

Le logiciel R est trés puissant pour faire des simulations aidant &
Iinterprétation des résultats mis en avant dans une publication. On
lillustre ici avec un article prétendant que la synchronie entre des
séries temporelles de masting serait plus intense entre les années de
disette qu’entre les années d’abondance. Le choix d’un critere de
classification conduisant a des effectifs trés déséquilibrés entre les
deux classes induit un impact des points de nuisance tres contrasté.
Les points de nuisance sont les années ou la classification n’est pas
cohérente entre les deux séries. Quelques exercices pour poursuivre
I’analyse sont proposés.
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1 Introduction

N s’intéresse ici a article [11] intitulé « Geography of masting creates greater
O synchrony in seed scarcity than in seed abundance. » Les données analysées
sont des séries temporelles, @, de suivi pendant n = 36 années de la production
de fruits par des arbres!. Les éléments de x sont & valeur dans R, autrement
dit nous avons des séries non négatives :

Vie{l,...,n}:2;,>0 (1)

NE premieére caractéristique importante des séries de masting est leur forte
U variabilité : pour reprendre ’échelle verbale de KVALSETH [3] les trois
quart des séries de la base de données MASTREE+ [1] sont dans la gamme
haute et tres haute de variabilité [6]. Les distributions des valeurs des séries de
masting sont donc tres fortement asymétriques a droite, ce qui n’est pas sans
conséquence sur le choix fait par les auteurs [11] pour distinguer les années de
disette et d’abondance. Soit M; la variable aléatoire de BERNOULLI indicatrice
de I’événement : « la iéme observation x; correspond a une année de masting ».
La regle de décision utilisée est :

M:z — {0,1}"
s max &
T > MzM(xl){ L sizi> @)

2
0 sinon

UTREMENT dit, on déclare années d’abondance toutes celles dont la produc-
tion de fruits est strictement supérieure a la valeur maximale observée dans
la série divisée par deux. C’est un choix qui est discutable, il y aurait bien des
alternatives [4, 5], mais tel n’est pas 1’objet ici puisque nous voulons reproduire
la méthodologie utilisée [11]. La conséquence immédiate de ce choix est qu’il va
y avoir un fort déséquilibre dans la partition définie par ’équation 2 : beaucoup
d’années de disette et peu d’abondance, et ce déséquilibre ira croissant avec le
niveau de variabilité de la série.

NE seconde caractéristique importante des séries de masting est leur syn-
U chronie. Soient deux séries 1 et o issues de deux populations distantes,
parfois de plusieurs centaines de kilomeétres comme dans [11], on observe souvent
qu’elles sont relativement synchrones avec des années d’abondance et de disette
souvent identiques entre les deux. Pour quantifier le degré de synchronie entre
deux séries on utilise des statistiques de corrélation comme le r de PEARSON [7],
le p de SPEARMAN [9] ou le 7 de KENDALL [2]. Nous utiliserons comme dans [11]
le p de SPEARMAN qui n’est rien d’autre que le 7 de PEARSON calculé sur les
rangs des séries &1 et xs.

"APPROCHE utilisée dans [11] est de partitionner les données selon 1'équa-

tion 2 et de calculer un coefficient de corrélation dit « partiel » pour les
années d’abondance et de disette. Attention, cette dénomination peut porter a
confusion parce que 'on parle également de corrélation partielle pour la corré-
lation entre deux variables conditionnellement & une autre, on prendra soin de
bien toujours mettre des guillemets. Mais il y a un petit probléme : que fait-on

1Sapin argenté silver fir, hétre European beech, méléze European larch, épicéa Norway
spruce, pin sylvestre Scots pine, chéne sessile sessile oak et chéne pédonculé pedunculate oak.
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par exemple si M; = 1 pour @1 et M; = 0 pour x5 ? Voici ce qui est dit [11, p.
7 :

In cases when the annual value of seed production for the two sites
falls into opposite tails, that value was included when calculating
the partial Spearman correlation in both tails [10].

Et en retourant a la source [10, p. 5] :

In cases when the annual value of seed production for the two sites
falls into opposite tails, that value was included when calculating
partial Spearman correlation in both tails. Thus, if one site expe-
rienced a mast peak and the other a year of seed scarcity in the
same year, synchrony was reduced in both tails.

E diable est dans les détails et c’est ici que le bat blesse. Autant I’équa-
tion 2 définit bien une partition du jeu de données, autant on ne peut pas
considérer que les corrélations « partielle » d’abondance et de pénurie sont une
décomposition de la corrélation globale puisqu’elles peuvent étre calculées avec
des points en commun. Nous appellerons ces points en commun des points de
nuisance. Pour un couple de deux séries (a1, €2) on définit la variable aléatoire
de BERNOULLI indicatrice de Pévénement : « la iéme année du couple (z1,, z2,)
correspond a un point de nuisance » par :

N (2171,:122) — {O, 1}n
(xlmx%) — Nz = N($1i,l’2i) = { L s M(xll) 7é M<$21) (3)

0 sinon

OTONS que ces points de nuisance seront par construction communs aux
N sous-ensembles utilisés pour calculer la synchronie des années d’abondance
et de disette. Il est un peu abusif de dire que I'on a décomposé la synchronie
entre les années de pénurie et d’abondance en s’appuyant sur des statistiques
calculées sur des données pouvant se chevaucher. Mais a quel point cela pose-t-il
probléme en pratique ? C’est ici que R est un outil puissant.

2 Simulations

2.1 Trois cas dégénérés

LE code R utilisé ici est donné en annexe (section 4 page 10). On commence
par le cas dégénéré de deux séries parfaitement synchrones pour expliquer
les sorties graphiques.

set.seed(1) ; plotsynchr(r = 1)
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UR le graphique du haut nous avons la représentation de nos deux séries
S et 3 qui dans ce cas particulier sont parfaitement superposées. Les années
d’abondance sont en rouge et celles de disette en bleu. La valeur du coefficient
de corrélation de SPEARMAN est donnée en titre du graphique ainsi que les
coefficients de variation de PEARSON [8], PCV, et celui de KVALSETH [3], KCV.
Par défaut on fait une série de 36 ans comme dans [11] mais on peut modifier
¢a avec le parametre ny.

ANS les graphiques du bas on a séparé les années de disette a gauche
des années d’abondance a droite. Les titres donnent les p « partiels » de
SPEARMAN. Les points de nuisance (équation 3) sont en jaune lavasse, il n’y en
a pas ici puisque les séries sont identiques. Ce sont les rangs des valeurs qui sont
représentées pour avoir le pendant graphique du p de SPEARMAN. Pour mieux
comprendre la coloration des points prenons le cas dégénéré de deux séries en
parfaite opposition de phase.

set.seed(1) ; plotsynchr(r = -1)
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ETTE fois nous avons des points de nuisance en jaune lavasse. La synchronie
C « partielle » pour les années d’abondance n’est calculée qu’avec des points
de nuisance, on voit la limite du sens que 'on peut donner a cette statistique.
Voyons maintenant le cas dégénéré de deux séries completement dé-corrélées.

set.seed(1) ; plotsynchr(r = 0)
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EST 1a que ¢a devient intéressant sur le graphique en bas a droite. Comme
les années d’abondance sont des événements rares il est peu probable d’ob-
server simultanément une année d’abondance dans les deux séries, on se retrouve
avec beaucoup de points de nuisance qui ont une valeur élevée dans une série et
une valeur basse dans 'autre. On induit ainsi une corrélation négative dans la
statistique des années d’abondance. On le fait également dans la statistique des
années de disette, mais l'effet est moins prononcé car noyé dans plus de valeurs.
Maintenant que nous avons compris ’origine du gag, nous pouvons procéder par
simulation pour étudier son impact.

2.2 Etude par simulation

ON part de la figure [11, fig. 1] pour le hétre (beech), on voit un p de SPEARMAN
qui décroit a peu pres linéairement de 0.7 & 0.3 entre une distance 0 a 400

km entre les sites On résume donc ¢a par le modele suivant :

taupred <- function(distance) -0.001*distance + 0.7

xx <- seq(0, 400, 1le 256)

plot(xx, taupred(xx), type "1", lwd = 2, xlab = "Distance [km]", las = 1,
main = "Synchronie globale pour le hétre", ylab = "Spearman correlation",

ylim = c(-0.2, 0.8), col = "darkblue")
abline(h = 0, 1ty = 2)
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N commence par initialiser avec des valeurs manquantes les tables GlobalSyn,
LowTailSyn et UppTailSyn pour stocker les résultats de nos simulations
pour les années de disette et d’abondance, respectivement. La variable ndist
contrdle le nombre de distances entre 0 et 400 km que 'on veut échantillonner
et la variable nsites le nombre de sites souhaité a chaque point kilométrique.
Dans les tables de résultat les sites sont en ligne et les points kilométriques en
colonnes.
nsites <- 256 ; ndist <- 11 ; seqd <- as.integer(seq(0, 400, le = ndist))
LowTailSyn <- as.data.frame(matrix(NA, nrow = nsites, ncol = ndist))

colnames(LowTailSyn) <- pasteO("D", seqd)
GlobalSyn <- UppTailSyn <- LowTailSyn

N définit la fonction getSyn () pour tirer au hasard un couple de séries tem-
O porelles (x1,x2) et calculer les corrélations « partielles » pour les années
d’abondance (Hrsp) et les années de disette (Lrsp) ainsi que la synchronie glo-
bale (Grsp). Elle fait appel a la fonction rsynch () expliquée en annexe (section 4
page 10) pour avoir un couple de séries avec un niveau de synchronie donné.
L’argument nuisance controle si on souhaite incorporer les points de nuisance
ou non. Comme tout est vecteur dans R le code est compact et élégant.

getSyn <- function(nuisance = TRUE, method = "spearman", ...){
z <- rsynch(...) ; x1 <-z[ , 1] ; x2 <- z[ , 2]
Hx1l <- x1 > max(x1)/2.0 ; Lx1 <- !'Hx1
Hx2 <- x2 > max(x2)/2.0 ; Lx2 <- !'Hx2
if (nuisance){
Hx12 <- Hx1 | Hx2
Lx12 <- Lx1 | Lx2
} else {
Hx12 <- Hx1 & Hx2
Lx12 <- Lx1 & Lx2

Grsp <- cor(xl, x2, method = method)

Hrsp <- cor(x1[Hx12], x2[Hx12], method = method)
Lrsp <- cor(x1[Lx12], x2[Lx12], method = method)
return(c(Grsp = Grsp, Hrsp = Hrsp, Lrsp = Lrsp))

IL suffit maintenant de faire rouler notre fonction avec replicate() pour
peupler les colonnes des tables de résultat UppTailSyn, LowTailSyn et GlobalSyn.
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r <- taupred(seqd)
for(j in seq_len(ndist)){
manip <- as.data.frame(t(replicate(nsites, getSyn(r = r[j1))))
GlobalSyn[ , j] <- manip$Grsp
UppTailSyn[ , j] <- manip$Hrsp
LowTailSyn[ , j] <- manip$Lrsp
}

L ne reste plus qu’a représenter la distribution des valeurs pour chaque point
kilométrique. On superposera en bleu la synchronie globale.

plotUppLow <- function(ylim = c(-1, 1), ...){
par (mfrow = c(1, 2))
mybxplt <- function(x, ...){
boxplot(x, ylim = ylim, las = 2, names = substr(colnames(x), 2, 4),
xlab = "Distance [km]", ylab = "Spearman correlation",

abline(h = 0, 1ty = 2)

points(1l:ndist, apply(GlobalSyn, 2, median, na.rm = TRUE), col = "blue2", type = "1", lwd = 2)

+
mybxplt(LowTailSyn, main = "Lower tail synchrony")
mybxplt (UppTailSyn, main = "Upper tail synchrony")

}
plotUppLow()
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E moins que ’on puisse dire c¢’est qu’il n’y a pas le méme impact des points de
L nuisance sur les années de disette et d’abondance. A gauche, pour les années
de disette, la médiane est assez proche de la valeur globale, on note quelques
outliers du coté des valeurs faibles, sans doute quand le nombre de points de
nuisance est élevé, tirant la corrélation vers le bas. A droite, pour les années
d’abondance, I'impact est dramatique puisque la médiane est toujours néga-
tive. Les points de nuisance plombent completement la corrélation. Regardons
maintenant ce qui se passe si on n’incorpore pas les points de nuisance.

GlobalSyn[ , ] <- UppTailSyn[ , ] <- LowTailSyn[ , ] <- NA
for(j in seq_len(ndist)){
manip <- as.data.frame(t(replicate(nsites, getSyn(r = r[j], nuisance = FALSE))))
GlobalSyn[ , j] <- manip$Grsp
UppTailSyn[ , j] <- manip$Hrsp
LowTailSyn[ , j]l <- manip$Lrsp

plotUppLow ()
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gauche pour les années de disette, cela ne change pas grand chose, on a

une distribution plus symétrique avec des outliers des deux cotés de la
distribution. A droite, pour les années d’abondance, on a quelque chose d’assez
moche qui s’explique par le faible nombre de points qui satisfont le critére (eq.
2) simultanément dans les deux séries. On peut s’en convaincre en comptant
le nombre de valeurs manquantes (on ne peut pas calculer le coefficient de
corrélation quand il y a zéro ou un point) dans la table :

apply (UppTailSyn, 2, \(x) sum(is.na(x)))

DO D40 D80 D120 D160 D200 D240 D280 D320 D360 D400
158 161 167 196 187 193 198 210 218 223 217

Ly ade60%a90 % de valeurs manquantes selon le niveau de synchronie.
On va aussi se retrouver avec beaucoup de cas avec seulement deux points,
soit p = £1, ce qui explique I’étendue des boites de -1 a +1 sur le graphique. Il
n’y a en fait pas beaucoup de valeurs distinctes possible pour p avec si peu de
points :

apply (UppTailSyn, 2, \(x) length(unique(zapsmall(x))))

DO D40 D80 D120 D160 D200 D240 D280 D320 D360 D400
12 12 11 8 9 11 7 10 7 5 4

AU vu de ces résultats on pourrait étre tenté d’interpréter I'introduction des
points de nuisance comme une volonté de pouvoir calculer un coefficient
de corrélation « partiel » quoi qu’il en cofite, comme disait « I’autre ». Les pes-
simistes y verront une illustration du triste publish or perish, les optimistes une
invitation a la tres chere disputatio de I’Université.

3 Exercices

3.1

PENSEZ—VOUS que les résultats des simulations seront changés si on utilise le
coefficient de PEARSON au lieu de celui de SPEARMAN ? Faites ensuite la
simulation.
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3.2

OUR augmenter le nombre de points disponibles (hors points de nuisance)
P pour calculer le coefficient de corrélation « partiel » des années d’abon-
dance on pourrait étre tenté d’augmenter la longueur des séries en jouant sur le
parametre ny. Essayez. Ca ne marche pas. Pourquoi 7

3.3

N jouant sur le niveau de variabilité des séries avec le parametre varxy es-
E sayez de vous rapprocher le plus possible de la figure [11, fig. 1]. Faites alors
quelques simulations avec la fonction plotsynchr(). Ces séries vous semblent-
elles bien représenter le phénomeéne de masting ?

3.4

A fonction utilisée ici pour simuler des séries de masting n’est pas comple-
tement satisfaisante dans le sens ou elle ne comporte pas suffisamment de
valeurs nulles. Transformez-la pour que toutes les valeurs en dessous d’un seuil
donné soient forcées a zéro. Refaire alors les analyses avec cette nouvelle version.

4 Annexes

4.1 rsynchr()

A fonction rsynchr () qui permet de tirer deux séries x et y avec un niveau
de synchronie donné dérive directement de la fonction mvrnorm() du paquet
MASS [12] qui permet de tirer un échantillon pseudo-aléatoire de n points dans
une distribution normale bivariée.
rsynch <- function(ny = 36, mu = c(0, 0), varxy = 1, r = 0.7, empirical = TRUE,
require (MASS)
Sigma <- matrix(c(varxy, r*varxy, r*varxy, varxy), nrow = 2, ncol = 2)

return(exp(mvrnorm(ny, mu, Sigma, empirical = empirical)))

}

LE parametre Sigma de la fonction mvrnorm() est la matrice de variance-
covariance ¢ :

or Oy
(7 o @)

Y

OUR se simplifier la vie on va supposer, ce qui n’est pas déraisonnable pour
des études de masting intra-spécifiques, qu’il y a homoscédasticité (c’est a

dire 02 = 05 = 0?) et que la matrice ¢ se simplifie en :

0% oy
‘= ( o ) (5)

Le coefficient de corrélation linéaire 4, de PEARSON [7] s’écrit alors comme :
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Oy  Ouy
Ty = =2 (6)
020y O

11 suffit donc d’utiliser une matrics de la forme :

2 2
. o TayO
S = ( szgz o2 ) (7)

VOICI un exemple d’utilisation pour illustrer la signification du coefficient de
corrélation linéaire. On utilise ici 'option empirical = TRUE pour que la
valeur du coefficient de variation soit exactement celle demandée.

set.seed(1) ; par(mfrow = c(3, 3), mar = c(1.5, 1, 2, 1))

for(r in seq(-0.95, +0.95, le = 9))

plot (mvrnorm(256, c(0,0), matrix(c(l, r, r, 1), 2, 2), empirical = TRUE),
main = bquote(r”2 == .(r)), pch = 19)

> =-0.95

-1

-2
1

-2 -1 . 0 1 2 3 4

> =0.2375
o - o0 - °
° [ ]
~ ~ . 'y

ey
. é/..
i

° ] o
" S ¥ r 8
| ') [} [ )
o ~ o oo
T ! ] ® e o
P P :
I I I I I I I I I I I I
-4 -3 -2 -1 0 1 2 -2 -1 0 1 2
r*=0.7125 *=0.95

-1

O‘.

o
|

o _|
|

2 e} 1 n 1 o ) o 1 n 1 o ) 1 n 1 el 2

OUR avoir une distribution de type masting j’ai simplement pris I’exponen-
tielle des valeurs. Cela permet de générer des séries non-négatives asymé-
triques a droite, et ce d’autant plus que la valeur du parametre varxy est élevée.
Avec les valeurs par défaut on obtient des séries comme celles présentées dans

R version 4.4.1 (2024-06-14) Page 11/15 Compilé le 2026-01-19
URL : https://esb.univ-1lyonl.fr/pdf/kkpnas.pdf



e

< % P Jean R. LOBRY

la section 2.1 page 3. La valeur du p de SPEARMAN [9] est inchangée par cette
transformation monotone mais pas celle du r de PEARSON [7].

set.seed(1) ; par(mfrow = c(3, 3), mar = c(1.5, 1, 2, 1))
for(r in seq(-0.95, +0.95, le = 9))

plot(rsynch(ny = 266, r = r),
main = bquote(r”2 == .(r)), pch = 19)
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4.2 plotsynchr()

LE code ci-apres est repris de [6, supp. mat.] pour calculer le coefficient de
variation de PEARSON [8], FCV, et celui de KvALseTH [3], *CV. L'URL
donnée dans I’article? est obsoléte mais devrait rediriger vers la nouvelle? auto-
matiquement.

sdn <- function(x, i,

n <- sum(!is.na(x)) # number of non missing values
return(sqrt((n - 1)/n)*sd(x[i], ...))

}
PCV <- function(x, i, ...){
barx <- mean(x[i], ...
if (isTRUE(all.equal(barx, 0))) return(0)

2https://pbil.univ-lyonl.fr/R/donnees/CVisDead.zip
Shttps://esb.univ-1lyonl.fr/donnees/CVisDead.zip
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return(sdn(x[i],

KCV <- function(x, i,
PCV2 <- PCV(x, i,
return(sqrt (PCV2/

...)/barx)
RSES
LL0)72

(1 + PCV2)))

LE code ci-apreés est utilisé pour produire les graphiques de la section 2.1
page 3, se reporter a cette derniere pour leur explication.

plotsynchr <- function(ny = 36, ...){
layout (matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

z <- rsynch(ny = ny,
rsp <- signif(cor(x1l, x2,
PCV1 <- signif(PCV(x1, na.rm
PCV2 <- signif(PCV(x2, na.rm
KCV1 <- signif(KCV(x1l, na.rm

= TRUE), 3)
= TRUE), 3)
= TRUE), 3)

KCV2 <- signif (KCV(x2, na.rm = TRUE), 3)
main <- bquote(r[sp] ==

phantom(0)
phantom(0)
phantom(0)
phantom(0)

“P*CV[1] ==
“K*CV[1] ==
“PxCV[2] ==
“K*CV[2] ==

Hx1l <- x1 > max(x1)/2 ;
Hx2 <- x2 > max(x2)/2 ; Lx2 <- !Hx2
bgl <- ifelse(Hx1, "red3", "blue3")

# Time series

par(mar = c(4, 4, 2, 2) + 0.1)

plot(l:ny, x1, type = "b", pch = 21, ylim = range(z), main
xlab = "Time", ylab = "Masting intensity", las = 1)

main, line = 1)

bg2 <- ifelse(Hx2, "red2", "blue2")

title(main =

points(1:ny, z[,2], type

legend("toplef", inset
legend = c(bquote(x[1]), bquote(x[2])), pch

Hx12 <- Hx1

| Hx2

. (rsp)~~
. (PCV1) ~~
. (KCV1) ~~
. (PCV2) ~~
. (KCv2))

Lx1 <- !Hx1

= "b", pch = 23, bg =

0.01,

Hrsp <- signif(cor(x1[Hx12], x2[Hx12], method

Lx12 <- Lx1

| Lx2

Lrsp <- signif(cor(x1[Lx12], x2[Lx12], method
par(mar = c(3, 4, 1.5, 2) + 0.1)

# scarcity correlation plot
col <- ifelse(Lx1[Lx12] & Lx2[Lx12], "blue3",

rxl <- rank(x1[Lx12])

; rx2 <- rank(x2[Lx12])

plot(rxl, rx2, pch = 19, col = col)
abline(1m(rx2~rx1), col
title(main = bquote(r[spp] == .(Lrsp)), line
legend("topleft", inset = 0.01, legend = c("0K", "Nuis."),

col = c("blue3", "yellow3"), pch = 19, bg = grey(0.97))

= "blue3")

# abundance correlation plot
col <- ifelse(Hx1[Hx12] & Hx2[Hx12], "red3", "yellow3")

rxl <- rank(x1[Hx12])

; rx2 <- rank(x2[Hx12])

plot(rxl, rx2, pch = 19, col = col)
bquote(r[spp] == .(Hrsp)), line = 1, col.main
abline(Im(rx2~rx1), col = "red3")
legend("topleft", inset = 0.01, legend = c("OK", "Nuis."),
col = c("red3", "yellow3"), pch = 19, bg = grey(0.97))

title(main =

L) oy oxt<-z[, 1] ; x2 <- z[ , 2]
method = "spearman"), 3)

bg2)

c(21, 23),
= "spearman")
= "spearman")

"yellow3")

1, col.main

= bg = bgl,

bg = grey(0.97))
, 3)
, 3)

= "blue3")

= "red3")
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